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Causal Mediation Analysis for Multivariate Longitudinal Data and Survival
Outcomes

Xiaoxiao Zhou and Xinyuan Song

Chinese University of Hong Kong

ABSTRACT
This study proposes a joint modeling approach to conduct causal mediation analysis that accommo-
dates multivariate longitudinal data, dynamic latent mediator, and survival outcome. First, we intro-
duce a confirmatory factor analysis model to characterize a time-varying latent mediator through
multivariate longitudinal observable variables. Then, we establish a growth curve model to describe
the linear trajectory of the dynamic latent mediator and simultaneously explore the relationship
between the exposure and the mediating process. Finally, we link the mediating process to the sur-
vival outcome through a proportional hazards model. In addition, we use the mediation formula
approach to assess the natural direct and indirect effects and prove the identifiability of the causal
effects under sequential ignorability assumptions. A Bayesian approach incorporating the Markov
chain Monte Carlo algorithm is developed to estimate the causal effects efficiently. Simulation
studies are conducted to evaluate the empirical performance of the proposed method. An application
to the Alzheimer’s Disease Neuroimaging Initiative study further confirms the utility of the proposed
method.

KEYWORDS
Causal mediation; dynamic
latent variable; growth
curve model; multivariate
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1. Introduction

Examining a set of variables for mediation effects is a ubi-
quitous process in the social, behavioral, and health sciences
owing to its extraordinary ability to identify and explain the
mechanisms behind observations. When dealing with longi-
tudinal data, growth curve modeling is a promising way to
investigate individual differences in change over time and
explore the predictors of these individual differences. It can
be formulated in a multilevel modeling framework (Bryk &
Raudenbush, 1992) or carried out in structural equation
modeling (SEM) framework (Meredith & Tisak, 1990;
Muth�en & Curran, 1997). Cheong et al. (2003) proposed a
method to evaluate a mediational process using latent
growth curve (LGC) model by regarding the longitudinal
mediator and outcome as two separate parallel processes.
This method extended the mediation analysis to accommo-
date the longitudinal process. Afterward, Cheong (2011)
investigated the accuracy of estimates and statistical power
for testing meditation in latent growth curve modeling and
provided guidelines for improving estimation accuracy. von
Soest and Hagtvet (2011) proposed several longitudinal
mediation models in the context of the LGC model and
provided detailed explanations for constructing such models.
Although other choices, such as the cross-lagged panel
model, are also available to conduct longitudinal mediation
analysis, Selig and Preacher (2009) acknowledged the advan-
tages of the LGC model when one or more variables exhibit
a meaningful trajectory of change. Nevertheless, the

preceding analyses in this direction were mainly based on
the normality assumption of the two processes and inapplic-
able to time-to-event outcomes.

The existing longitudinal mediation analyses incorporat-
ing the LGC model rely on a succession of linear structural
equation models (SEMs) and assess the causal effects
through a difference-in-coefficients approach or a product-
of-coefficients method. One common criticism of such trad-
itional methods is that they can provide only a black-box
view of causality. Imai et al. (2010) proposed an alternative
approach to overcome this drawback. Their proposed causal
mediation analysis is based on the counterfactual framework
without reference to any specific statistical model, thereby
accommodating linear or nonlinear and parametric or non-
parametric models as well as various data types of mediators
and outcome variables. These appealing features facilitate
the definition and interpretation of mediated effects on a
time-to-event outcome. Abundant literature has endeavored
to examine causal effects on the scales of hazard, hazard
ratio, and survival probability under additive hazards (AH),
proportional hazards (PH), and transformation models
(Huang & Cai, 2016; Lange & Hansen, 2011; VanderWeele,
2011). Furthermore, Huang and Yang (2017) and Cho and
Huang (2019) considered multiple mediators and examined
complex path-specific effects in causal mediation models
with survival outcomes. Sun et al. (2021) developed a joint
mediation model involving a latent mediator to reduce the
dimension of mediators and simultaneously relax the highly
restrictive unconfoundedness assumptions.
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Recent mediation studies have begun to explore the
causal mechanism of the joint modeling of longitudinal and
survival data, aiming to understand how much of the total
effect is through the longitudinal mediator. Zheng and van
der Laan (2017) considered general longitudinal settings
with time-varying mediators, exposures, and survival out-
comes. Upon establishing identifiability and the correspond-
ing statistical estimands, they derived the efficient influence
curves and demonstrated the robustness properties. Lin
et al. (2017) altered the definition of effects to interventional
ones such that the effects of interest can be well defined and
identified. Distinguished from Lin et al. (2017), Didelez
(2019) proposed the interventional approach based on an
extended graphical method, an attractive alternative for any
causal mediation setting. Later, Aalen et al. (2020) adopted
this method and combined the g-formula with the AH
model and a sequential linear model for the mediator pro-
cess to obtain simple and interpretable expressions for direct
and indirect effects. Under a counterfactual framework,
Zheng and Liu (2022) quantified direct and indirect effects
using a joint modeling approach. Zeng et al. (2022) further
employed a functional principal component analysis
approach to estimate the mediator process and derived a g-
computation formula to express the causal estimands using
the model coefficients.

On the other hand, one common phenomenon in med-
ical and psychological research settings is that a single
observed variable cannot fully characterize a latent trait.
Instead, this latent trait must be measured together by mul-
tiple observed indicators from different perspectives. The
multiple indicators are typically highly correlated, and sim-
ultaneously introducing them into a mediation analysis
would render the causal diagram bewildering. While naively
assuming the parallel pattern of the mediators may lead to
information loss, the hypothesis of causally ordered relation-
ships is also unplausible as it is hard to determine their
orders. The factor analysis technique is a useful tool for
addressing the problem. Unfortunately, none of the above
methods have considered mediation analysis with survival
outcomes and dynamic latent mediators.

This study proposes a joint modeling approach to con-
duct causal mediation analysis to accommodate multivariate
longitudinal data observed at irregular time points and sur-
vival outcomes. This model comprises three components.
The first component is a confirmatory factor analysis (CFA)
model to characterize the latent mediator with several highly
correlated observable surrogates. The second one is a growth
curve model to describe the trajectory of the latent mediator
and explore the relationship between the exposure and the
mediating process. Finally, the mediating process is linked
to the survival outcome through a PH model. Under this
machinery, we can take full advantage of the longitudinal
information and avoid the curse of dimensionality.
Furthermore, we define causal direct and indirect effects on
a counterfactual framework and show the identifiability of
these effects under sequential ignorability assumptions. We
develop a fully Bayesian approach with an efficient Markov
chain Monte Carlo (MCMC) algorithm to simultaneously

estimate the unknown parameters and causal effects. As far
as we know, this study is the first to conduct causal medi-
ation analysis with multivariate longitudinal and survival
data.

The remainder of this paper is organized as follows.
Section 2 introduces the proposed model and discusses the
associated model identifiability issue. Section 3 derives the
effects from the mediation formulation and certain identifi-
ability assumptions, and Section 4 elucidates a Bayesian
approach for conducting statistical inference. Sections 5 and
6 assess the empirical performance and utility of the pro-
posed method through simulation studies and an application
to the Alzheimer’s disease dataset, respectively. Section 7
concludes the paper. Technical details are provided in the
Appendix.

2. Model Description

2.1. CFA model

For each subject, let Yij ¼ YiðtijÞ ¼ ðyi1ðtijÞ, :::, yipðtijÞÞT
denote the p� 1 vector of multivariate observations and
Mij ¼ MiðtijÞ denote the dynamic latent mediator for subject
i (i ¼ 1, :::, n) at time tij (j ¼ 1, :::, JiÞ, where n is the total
number of subjects and Ji is the total number of visits for
subject i. A CFA model for characterizing the relationship
between the observed variables and latent factors is defined
as follows:

Yij ¼ KMij þ �ij, (1)

where K is the p� q factor loading matrix; �ij is a p� 1
vector of measurement errors independent of Mij, and �ij �
Nð0,WÞ with W ¼ diagðw1, :::,wpÞ:

2.2. LGC model

Let Zi be the exposure variable, Xi ¼ ðxi1, :::, xilÞT be the l�
1 vector of baseline covariates, and MiðtÞ be the trajectory
value of the latent mediator for subject i at time t. A growth
curve model to depict the trajectory of MiðtÞ is defined as
follows:

MiðtÞ ¼ IMi þ SMit,

IMi ¼ c0 þ c1Zi þ cT2Xi þ �Ii,

SMi ¼ b0 þ b1Zi þ bT2Xi þ �Si,

(2)

where �Ii and �Si are random residuals and ð�Ii , �SiÞT �
Nð0,RÞ: Henceforth, the dynamic heterogeneous effect of Zi
on MiðtÞ is jointly described by the random intercept IMi

and random slope SMi through the linear trajectory model
Equation (2).

2.3. PH Model

Denote T�
i and Ci as the event and censoring times, respect-

ively, di ¼ IðT�
i < CiÞ as the failure indicator, and Ti ¼

minðT�
i ,CiÞ as the observed time. With the independent
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censoring assumption, we consider a PH model to investi-
gate the direct effect of the exposure Zi and the indirect
effect implemented through the time-dependent mediator
MiðtÞ on the hazards of interest kiðtÞ:
kiðtjZi,MiðtÞ,XiÞ ¼ k0ðtÞ exp ða1Zi þ a2MiðtÞ þ aT3XiÞ, (3)

where kiðtÞ is the hazard function and k0ðtÞ is an unknown
baseline hazard function.

2.4. Model Identifiability

The proposed model is unidentifiable without imposing appro-
priate identification constraints. For example, for an arbitrary
constant b, Yij ¼ KMij þ �ij ¼ Kbb�1Mij þ �ij ¼ Kbb�1ðIMi þ
SMi tijÞ þ �ij ¼ K�ðI�Mi

þ S�Mi
tijÞ þ �ij, where K� ¼ Kb, I�Mi

¼
b�1IMi , and S�Mi

¼ b�1SMi with covðIMi , SMiÞ ¼ b�2R: We fol-
low the common practice (Song & Lee, 2012) to fix the first
factor loading at 1.

3. Causal Effects Under Potential Outcome
Framework

We quantify the direct and indirect effects of the exposure
variable on the survival outcome of interest under the
potential outcome framework (Imbens & Rubin, 2015). Let
MzðtÞ denote the potential time-dependent mediator at time
point t had the exposure Z been set to z, Mz ¼ fMzðtÞ, t 2
½0, s�g denote the potential mediator process, where s is the
largest follow-up time, and Tðz,mÞ be the potential time-to-
event outcome that would be observed had Z and M been
set to z and m, respectively. Denote f ðTðz,Mz0ÞÞ as the func-
tion of time-to-event outcome T, which is a counterfactual
notation defined by nested potential outcome. We abbreviate
f ðTðz,Mz0ÞÞ to fz, z0 for convenience. Apart from the com-
monly used assumptions in causal inference, such as consist-
ency assumption and stable unit treatment value assumption
(SUTVA) (Imbens & Rubin, 2015), we make two more
assumptions to guarantee the identifiability of fz, z0 :

Assumption 1 (Ignorability). There are no unmeasured
confounders for the effect of exposure on the potential
mediator process and the potential survival time conditional
on the observed covariates:

fTðz,mÞ,Mzg?ZjX for any m and z 2 f0, 1g: (4)

Assumption 2 (Sequential ignorability). There are no
unmeasured confounders for the effect of the mediator pro-
cess M on the potential survival time conditional on the
exposure and the observed covariates:

M?Tðz,mÞjZ, X for any m: (5)

In the preceding assumptions, A?BjC stands for the
independence of A and B conditional on C. As mentioned
by the literature (Preacher, 2015; Zeng et al., 2021), this
ignorability assumption is strong and difficult to test.
Therefore, its plausibility is worth further investigating.

Theorem 1. Given Assumptions 1 and 2, fz, z0 is identifiable
with the following mediation formula:

fz, z0 ¼
ð
f ðTjz,wÞdFWðwjz0Þ, (6)

where W ¼ ðIM, SMÞ, w ¼ ðw1,w2Þ is the specific value of
W, and FWðwjz0Þ represents the conditional distribution of
W with the exposure z0:

Thus, the total and natural direct and indirect effects of
exposure Z on the survival outcome can be calculated as fol-
lows:

TEðz, z0Þ ¼ fz, z � fz0 , z0 ¼
Ð
f ðTjz,wÞdFWðwjzÞ

� Ð
f ðTjz0,wÞdFWðwjz0Þ,

DEðz, z0Þ ¼ fz, z0 � fz0 , z0 ¼
Ð ðf ðTjz,wÞ � f ðTjz0,wÞÞdFWðwjz0Þ,

IEðz, z0Þ ¼ fz, z � fz, z0 ¼
Ð
f ðTjz,wÞðdFWðwjzÞ � dFWðwjz0ÞÞ:

(7)

The above integrals can be approximated using Monte
Carlo integration. There are various choices for f, such as
the hazard function kðtÞ (Sun et al., 2021), the survival
probability function (Zeng et al., 2022; Zheng & Liu, 2022;),
and the restricted mean survival function (Zhou & Song,
2021). Under these circumstances, all the effects are func-
tions of t. A path diagram of the proposed model is
depicted in Figure 1.

We take the survival probability SðtÞ ¼ exp ð� Ð t
0 kðuÞduÞ

as an example to illustrate the computation. The counterfactual
notation Sz, z0 ðtÞ is a function of t and can be expressed as

Sz, z0 ðtÞ ¼ Ð
exp ð� Ð t

0 k0ðsÞ exp ða1z þ a2ðw1 þ w2sÞ
þ aT3XÞdsÞdFWðwjz0Þ: (8)

For simplicity, we denote DEðtÞ ¼ S1, 0ðtÞ � S0, 0ðtÞ,
IEðtÞ ¼ S1, 1ðtÞ � S1, 0ðtÞ and TEðtÞ ¼ S1, 1ðtÞ � S0, 0ðtÞ ¼
DEðtÞþ IEðtÞ:

4. Bayesian Estimation

The derived Sz, z0 ðtÞ is a function of regression parameters

a ¼ ða1, a2, aT3 ÞT , b ¼ ðb0,b1, bT2 ÞT , c ¼ ðc0, c1, cT2 ÞT , k0ðtÞ, and

SM

IM

YJiY1

Figure 1. The path diagram of the proposed model. The direct effect is repre-
sented by solid line and the indirect effect is shown by dotted line.

STRUCTURAL EQUATION MODELING: A MULTIDISCIPLINARY JOURNAL 3



R: Denote h as the set of all unknown parameters h ¼
ðaT , bT , cT ,R,WÞ: In the Bayesian framework, the posterior
distribution of h, k0ðtÞ, and the latent variables w can be
obtained through posterior sampling. Then, the Monte
Carlo estimates of Sz, z0 ðtÞ can be obtained accordingly.

4.1. Prior Specification

For the unknown baseline hazard function k0ðtÞ, we assume
a piecewise exponential distribution (Ibrahim et al., 2001).
Let 0 ¼ u0 < u1 < � � � < uG be a finite partition of the time
axis with uG > Ti for all i ¼ 1, :::, n: In the gth interval, let

k0ðtÞ ¼ kg for t 2 ðug�1, ug �, k ¼ ðk1, :::, kGÞT , and �ig denote
the failure indicator in the gth interval ðug�1, ug �, such that
�ig ¼ 1 if Ti 2 ðug�1, ug �:

We follow the common practice (Ibrahim et al., 2001;
Song & Lee, 2012) to assign the following conjugate prior
distributions to the parameters in models Equations (1)–(3):

Kkjwk � NðKk0,wkrkÞ, c � Nðc0,HcÞ,
b � Nðb0,HbÞ, a � Nða0,HaÞ, wk � IGðck1, ck2Þ,

kg � Gammaðdg1, dg2Þ, R � IWðR0,q0Þ, (9)

where IGð�, �Þ, Gammað�, �Þ, and IWð�, �Þ denote the inverse-
gamma, gamma, and inverse-wishart distributions, respect-
ively; Kk is the vector of unknown factor loadings in the kth
row of K; Kk0, c0, b0, and a0 are the hyperparameters repre-
senting the means of Kk, c, b, and a, respectively; rk,Hc,
Hb, and Ha are the hyperparameters representing the vari-
ance or covariance matrices of Kk, c, b, and a, respectively;
ck1, ck2, dg1, and dg2 are shape and rate hyperparameters for
wk and kg, respectively; R0 and q0 are hyperparameters
for R:

4.2. Posterior Distribution

Let Yi¼ðYi1,:::,YiJiÞ,Y¼ðY1,:::,YnÞ,Mi¼ðMi1,:::,MiJiÞT , M¼
ðM1,:::,MnÞ,X¼ðX1,:::,XnÞ, I¼ðIM1 ,:::,IMnÞT ,S¼ðSM1 ,

:::,SMnÞT ,T¼ðT1,:::,TnÞT ,U¼ðu0,:::,uGÞT ,Vi¼ð�i1,:::,�iGÞT ,
V¼ðV1,:::,VnÞ,d¼ðd1,:::,dnÞT , and J¼Pn

i¼1 Ji: The com-
plete-data likelihood function is derived as follows:

pðY,T,U,V,d,I,S,hjXÞ¼pðYjK,M,WÞpðI,SjX,b,c,RÞ
pðT,U,V,djX,a,kÞpðhÞ, (10)

where

pðYjK,M,WÞ¼ð2pÞ�pJ=2jWj�J=2 exp �1
2

Xn
i¼1

XJi
j¼1

ðYij�KmyijÞTW�1ðYij�KmyijÞ
8<
:

9=
;,

pðI,SjX,b,c,RÞ¼ð2pÞ�n=2jRj�n=2 exp �1
2

Xn
i¼1

ðwi�mwiÞTR�1ðwi�mwiÞ
( )

pðT,U,V,djX,a,kÞ¼
Yn
i¼1

YG
g¼1

fkjexpðmkiÞg�igdi exp ��ig kgðTi�ug�1Þþ
Xg�1

l¼1

klðul�ul�1Þ
8<
:

9=
;expðmkiÞ

2
64

3
75,

myij¼IMiþSMi tij,wi¼ðIMi ,SMiÞT ,mwi¼ðc0þc1ZiþcT2Xi, b0þ
b1ZiþbT2XiÞT , and mki¼a1Ziþa2ðIMiþSMi �TiÞþaT3Xi:

We use an MCMC algorithm that combines the data
augmentation, Gibbs sampler, and the Metropolis-Hastings
algorithm to implement the posterior sampling. The
involved posterior distributions can be derived based on
Equation (10) and the prior distributions specified in
Section 4.1. The details are presented in the Appendix.

4.3. Estimation of TE(t), DE(t), and IE(t)

The procedure for the Bayesian estimates of TE(t), DE(t),
and IE(t) is outlined as follows:

� Randomly select starting values of hð0Þ, kð0Þ, and wð0Þ:
� for k ¼ 1, . . . , K0, . . . , K0 þ K ,

a. Draw hðkÞ from pðhjY,X,T,U,V, d, kðk�1Þ,wðk�1ÞÞ:
b. Draw kðkÞ from pðkjY,X,T,U,V, d, hðkÞ,wðk�1ÞÞ:
c. Draw wðkÞ from pðwjY,X,T,U,V, d, kðkÞ, hðkÞÞ:
d. Calculate the plug-in estimate of SðkÞz, z0 by Equation (8).
e. Calculate TEðtÞ,DEðtÞ, and IE(t).

� Discard burn-in iterations after checking convergence, and
compute the posterior mean and standard error estimates
of h, k, TE(t), DE(t), and IE(t) using posterior samples.

A pseudo algorithm for obtaining the Bayesian estimates of
TE(t), DE(t), and IE(t) is given below:

Algorithm 1: MCMC algorithm for obtaining the Bayesian
estimates of TE(t), DE(t), and IE(t)

Data: O ¼ fY,X,T,U,V, dg, K0, K
1: Randomly initialize h, k, w : h¼ hð0Þ,k¼ kð0Þ,w ¼ wð0Þ

2: for k¼ 1 to K0 þ K do
3: Update hðkÞ by sampling from pðhjO, kðk�1Þ,wðk�1ÞÞ,

specifically,
(3a): Update aðkÞ by sampling from

pðajO, bðk�1Þ, cðk�1Þ,Rðk�1Þ,Wðk�1Þ, kðk�1Þ,wðk�1ÞÞ
(3b): Update bðkÞ by sampling from

pðbjO, aðk�1Þ, cðk�1Þ, Rðk�1Þ,Wðk�1Þ, kðk�1Þ,wðk�1ÞÞ
(3c): Update cðkÞ by sampling from

pðcjO, aðk�1Þ,bðk�1Þ,Rðk�1Þ,Wðk�1Þ, kðk�1Þ, wðk�1ÞÞ
(3d): Update RðkÞ by sampling from

pðRjO, aðk�1Þ,bðk�1Þ, cðk�1Þ,Wðk�1Þ, kðk�1Þ,wðk�1ÞÞ
(3e): Update WðkÞ by sampling from

pðajO,aðk�1Þ, bðk�1Þ, cðk�1Þ, Rðk�1Þ, kðk�1Þ, wðk�1ÞÞ
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4: Update kðkÞ by sampling from pðkjO, hðk�1Þ,wðk�1ÞÞ
5: Update wðkÞ by sampling from pðwjO, hðk�1Þ, kðk�1ÞÞ
6: Calculate the plug-in estimate of SðkÞz, z0 by Equation (8)
7: Calculate TEðtÞ,DEðtÞ, and IE(t)
8: end for
9: Compute the posterior mean and standard error esti-

mates of h, k, TE(t), DE(t), and IE(t) using posterior sam-
ples from iterations K0 to K0 þ K:

5. Simulation Study

In this section, we conduct simulation studies to evaluate the
empirical performance of the proposed method. The unequally
spaced time points tij are simulated such that the mean for
each subject is zero, and increments tij � tij�1 are independ-
ently draws from Uð0, 1�, where Uð�, �Þ denotes the uniform
distribution. The time variable tij is then standardized to have
unit variance. The exposure variable Zi is randomly generated
from a Bernoulli distribution with a success probability of 0.4.

The baseline covariates Xi ¼ ðxi1, xi2ÞT , where xi1 and xi2 are
independently generated from N(0, 1) and Uð�1, 1Þ, respect-
ively. Next, the random intercept and slope ðIMi , SMiÞ are gen-

erated based on Equation (2) with c ¼ ð0:5, 0:5, 0:5, 0:5ÞT ,

b ¼ ð0:5, 0:5, 0:5, 0:5ÞT , and R ¼ 0:5 0:3
0:3 0:5

� �
: The latent

mediator Mij on the time point tij is calculated from the trajec-
tory model Equation (2). In the CFA model, we set p¼ 3,
KT ¼ ½1, 0:6, 0:6�, and W ¼ diagð0:36, 0:36, 0:36Þ to obtain
the trivariate observations Yij: As for the PH model, we set

a ¼ ð1, 1, 1, 1ÞT and consider two types of baseline hazard func-
tions, namely, (1) k0ðtÞ ¼ 0:5 and (2) k0ðtÞ ¼ t=2þ 0:2: The
censoring time Ci is generated from U(0, c) with an adjusted
c to ensure a desired censoring rate (CR). To evaluate the
finite-sample performance, we consider four scenarios with
ðn, CRÞ ¼ ð500, 30%Þ, ð500, 50%Þ, ð1000, 30%Þ, and ð1000, 50%Þ
and generate 100 datasets under each scenario.

In conducting estimation, we adopt G¼ 5 time intervals
with the cutpoints ug being the g

G th quantile of the empirical
distribution of Ti (Sun et al., 2021). The hyperparameters
involved in Equation (9) are assigned as follows (Prior I):
Kk0 ¼ 0, c0 ¼ b0 ¼ a0 ¼ 0, rk ¼ 1, Hc ¼Hb ¼Ha ¼ I, ck1 ¼ 9,
ck2 ¼ 4, dg1 ¼ 0:1, dg2 ¼ 0:2, R0 ¼ 6I, and q0 ¼ 5, where 0
and I are the zero vector and identity matrix of appropriate
dimensions, respectively. We conduct three test runs starting
from different initial values to check the convergence of the
MCMC algorithm and find that the three parallel chains
mix rapidly within 2,000 iterations. Therefore, we discard

Table 1. Bayesian estimates of parameters in simulation study under censoring rate ¼ 30%:

k0ðtÞ ¼ 0:5 k0ðtÞ ¼ t þ 1

N¼ 500 N¼ 1000 N¼ 500 N¼ 1000

CFA model (1)
Par BIAS RMSE BIAS RMSE BIAS RMSE BIAS RMSE
k2 –0.001 0.013 –0.001 0.009 –0.001 0.013 –0.000 0.009
k3 –0.001 0.013 –0.001 0.009 –0.001 0.013 –0.001 0.009
w1 0.000 0.019 0.000 0.014 –0.000 0.019 0.000 0.014
w2 –0.000 0.016 0.000 0.012 –0.000 0.015 0.000 0.012
w3 –0.000 0.017 0.000 0.011 –0.000 0.017 0.000 0.012
Latent growth curve model (2)
Par BIAS RMSE BIAS RMSE BIAS RMSE BIAS RMSE
c0 –0.008 0.058 0.001 0.039 –0.005 0.059 0.001 0.039
c1 0.006 0.091 0.000 0.065 –0.006 0.097 0.004 0.066
c2 0.001 0.045 0.002 0.031 –0.001 0.043 0.002 0.031
c3 0.008 0.075 0.004 0.052 0.002 0.072 0.004 0.051
b0 –0.010 0.058 0.001 0.037 –0.007 0.060 0.001 0.037
b1 0.002 0.096 –0.001 0.062 –0.007 0.097 –0.000 0.065
b2 0.003 0.045 0.006 0.032 0.007 0.043 0.000 0.033
b3 0.000 0.073 0.007 0.053 –0.006 0.074 0.007 0.052
r11 0.017 0.050 0.008 0.034 0.016 0.050 0.008 0.034
r12 –0.004 0.040 –0.000 0.026 –0.004 0.040 –0.000 0.026
r22 0.013 0.050 0.007 0.034 0.013 0.049 0.007 0.034
PH model (3)
Par BIAS RMSE BIAS RMSE BIAS RMSE BIAS RMSE
a1 –0.013 0.164 0.001 0.118 –0.046 0.169 0.001 0.118
a2 –0.001 0.098 0.001 0.073 –0.029 0.103 0.001 0.073
a3 0.011 0.148 –0.009 0.101 –0.020 0.150 –0.009 0.101
a4 0.012 0.099 –0.002 0.074 –0.013 0.097 –0.002 0.074
Causal effects
Par BIAS RMSE BIAS RMSE Par BIAS RMSE BIAS RMSE
TEð0:6Þ 0.002 0.027 0.000 0.019 TEð0:4Þ –0.005 0.031 0.001 0.020
DEð0:6Þ 0.003 0.025 0.000 0.018 DEð0:4Þ 0.001 0.028 0.006 0.020
IEð0:6Þ –0.001 0.017 0.000 0.012 IEð0:4Þ –0.006 0.020 –0.005 0.014
TEð1:2Þ 0.001 0.023 0.000 0.016 TEð0:8Þ –0.001 0.028 –0.004 0.019
DEð1:2Þ 0.003 0.021 0.000 0.015 DEð0:8Þ 0.005 0.024 0.001 0.017
IEð1:2Þ –0.002 0.016 0.000 0.011 IEð0:8Þ –0.006 0.019 –0.005 0.013
TEð1:8Þ 0.001 0.021 0.000 0.014 TEð1:2Þ 0.005 0.025 0.002 0.016
DEð1:8Þ 0.002 0.018 0.000 0.013 DEð1:2Þ 0.008 0.022 0.004 0.015
IEð1:8Þ –0.001 0.015 0.000 0.010 IEð1:2Þ –0.003 0.017 –0.002 0.011

BIAS: bias; CFA: confirmatory factor analysis; Par: parameter; PH: proportional hazards; RMSE: root mean square error.
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2,000 burn-in iterations and collect the subsequent 2,000
posterior samples to conduct posterior inference. Tables 1
and 2 summarize the results of parameter estimation on the
basis of 100 replications. The causal effects on the survival
probability are functions of t. We calculate their values on
20 time points equally distributed from zero to the max-
imum observed time. The bias (BIAS) and root mean square
error (RMSE) are similar, and thus, we only present the
results on three time points in the lower panel of Tables 1
and 2. Overall, the BIAS and RMSE for both parameters
and causal effects are close to zero, verifying the satisfactory
performance of parameter estimation and the extraordinary
ability of the mediation formula approach in estimating the
counterfactual outcome. In addition, the performance is
improved as either the sample size increases from N¼500
to N ¼ 1000 or CR decreases from 50% to 30%.

We further investigate the sensitivity of Bayesian results to
the prior specification and the normality assumption of the ran-
dom intercept IMi and random slope SMi : We disturb the
hyperparameters as follows (Prior II): Kk0 ¼ 2, c0 ¼ b0 ¼
a0 ¼ 2I, rk ¼ 100, Hc ¼ Hb ¼ Ha ¼ 100I, ck1 ¼ 7, ck2 ¼ 3,
dg1 ¼ 0:1, dg2 ¼ 0:2, R0 ¼ 11I, and q0 ¼ 8: The results are
similar and not reported. The simulation for assessing the

normality assumption is conducted under (n, CR) ¼ (500, 30%)
and k0ðtÞ ¼ 0:5: In this case, the simulation setup is the same
as before, except that �Ii and �Si in Equation (2) follow non-nor-
mal distributions as follows: (1) �Ii � Gammað4, 5Þ and �Si �
t3; (2) �Ii � t3 and �Si � Gammað4, 5Þ: The results reported in
Table 3 confirm the robustness of the Bayesian estimation to
the violation of the normality assumption.

The python code for the simulation study is on https://
github.com/smallpolaris/mcml.

6. Application

Alzheimer’s disease (AD) is a progressive and irreversible
disease with dementia symptoms, such as memory and cog-
nitive ability loss, gradually worsening over several years.
Initially launched in 2004, the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) is an ongoing longitudinal
and clinical-pathologic study to define AD progression and
has been extended, until now, to four phases: ADNI-1,
ADNI-GO, ADNI-2, and ADNI-3. This study has recruited
more than 2,000 subjects between the ages of 55 and
90 years and conducted a variety of imaging and clinical
assessments upon their consent. Refer to the official website

Table 2. Bayesian estimates of parameters in simulation study under censoring rate ¼ 50%:

k0ðtÞ ¼ 0:5 k0ðtÞ ¼ t þ 1

N¼ 500 N¼ 1000 N¼ 500 N¼ 1000

CFA model (1)
Par BIAS RMSE BIAS RMSE BIAS RMSE BIAS RMSE
k2 –0.001 0.013 –0.001 0.009 –0.001 0.013 –0.000 0.009
k3 –0.001 0.013 –0.001 0.009 –0.001 0.013 –0.000 0.009
w1 0.000 0.019 0.000 0.014 0.000 0.019 0.000 0.014
w2 –0.000 0.015 0.000 0.012 –0.000 0.015 0.000 0.012
w3 –0.000 0.017 0.000 0.012 –0.000 0.017 0.000 0.011
Latent growth curve model (2)
Par BIAS RMSE BIAS RMSE BIAS RMSE BIAS RMSE
c0 –0.014 0.058 0.001 0.040 –0.007 0.056 0.000 0.039
c1 0.014 0.090 0.000 0.063 0.008 0.093 0.002 0.062
c2 0.001 0.044 0.002 0.031 0.000 0.042 –0.000 0.030
c3 0.007 0.073 0.004 0.051 0.004 0.077 0.002 0.051
b0 –0.015 0.061 0.001 0.039 –0.010 0.058 0.000 0.038
b1 0.008 0.088 0.000 0.065 0.002 0.094 0.001 0.063
b2 0.002 0.045 0.001 0.033 0.002 0.043 –0.000 0.032
b3 –0.005 0.074 0.005 0.055 –0.003 0.076 0.006 0.052
r11 0.016 0.050 0.008 0.034 0.017 0.050 0.008 0.034
r12 –0.004 0.040 –0.000 0.026 –0.004 0.040 –0.000 0.026
r22 0.013 0.049 0.007 0.034 0.013 0.049 0.007 0.034
PH model (3)
Par BIAS RMSE BIAS RMSE BIAS RMSE BIAS RMSE
a1 –0.015 0.191 –0.011 0.130 –0.037 0.190 –0.027 0.128
a2 –0.002 0.114 –0.000 0.086 –0.018 0.110 –0.014 0.084
a3 0.007 0.168 –0.015 0.122 –0.012 0.166 –0.026 0.119
a4 0.006 0.126 �0.004 0.098 0.002 0.116 �0.005 0.090
Causal effects
Par BIAS RMSE BIAS RMSE Par BIAS RMSE BIAS RMSE
TEð0:3Þ 0.001 0.034 0.002 0.022 TEð0:3Þ 0.014 0.036 0.011 0.024
DEð0:3Þ 0.003 0.032 0.002 0.021 DEð0:3Þ 0.017 0.033 0.014 0.023
IEð0:3Þ –0.002 0.019 0.000 0.013 IEð0:3Þ –0.003 0.019 –0.003 0.013
TEð0:6Þ 0.001 0.031 0.001 0.020 TEð0:6Þ –0.003 0.033 –0.005 0.021
DEð0:6Þ 0.003 0.030 0.001 0.020 DEð0:6Þ 0.005 0.030 0.002 0.020
IEð0:6Þ –0.002 0.018 0.000 0.011 IEð0:6Þ –0.008 0.021 –0.007 0.015
TEð0:9Þ 0.001 0.029 0.001 0.013 TEð0:9Þ –0.001 0.030 –0.003 0.018
DEð0:9Þ 0.003 0.028 0.001 0.019 DEð0:9Þ 0.006 0.027 0.003 0.018
IEð0:9Þ –0.002 0.017 0.000 0.012 IEð0:9Þ –0.007 0.019 –0.006 0.014

BIAS: bias; CFA: confirmatory factor analysis; Par: parameter; PH: proportional hazards; RMSE: root mean square error.
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(http://adni.loni.usc.edu/) for more details about this study.
Besides the genetic and biochemical biomarkers, multiple
cognitive test scores are collected to measure participants’
cognitive decline at baseline, 6 months, 12months,
18months, 24months, and every 12months thereafter. A
series of previous studies have shown that the APOE-�4
allele accounts for the vast majority of AD risk (Cramer
et al., 2012; Raber et al., 2004). In addition, some research-
ers (Ali et al., 2018; Bretsky et al., 2003) have pointed out
that the APOE-�4 allele may function as a risk factor for
cognitive impairment in normal aging across a broad spec-
trum of domains or exert detectable effects early in a long
prodromal AD trajectory. Therefore, we aim to validate and
quantify the direct effect of APOE-�4 on the risk of AD and
the indirect effect through the longitudinal progressive cog-
nitive decline and then to AD.

In applying the proposed model to the ADNI data
analysis, the exposure Zi was defined as the presence of
APOE-�4. To illustrate the trend of cognitive decline com-
prehensively, three cognitive test scores—including
Alzheimer Disease Assessment Scale-Cognitive (ADAS) 11
(ADAS11; yi1ðtijÞ), ADAS13 (yi2ðtijÞ), and the Mini-Mental
State Examination (MMSE, yi3ðtijÞÞ—were grouped into a

longitudinal latent mediator Mij. These highly associated
longitudinal scores reflect the cognitive ability on comple-
mentary aspects, with high ADAS scores and low MMSE
scores implying poor cognitive ability. The failure time of
AD (Ti) was the duration from the baseline to the date of
the first AD diagnosis or the date of the last visit, whichever
came first. Age (Xi1), gender (Xi2, 1 ¼ female, 0 ¼ male),
years of education (Xi3), marital status (Xi4, 1 ¼ married,
0 ¼ otherwise), race (Xi5, 1 ¼ White, 0 ¼ otherwise), hippo-
campus volume (Xi6), and ventricle volume (Xi7) at baseline
were considered as a minimum set of confounders (Xi) in
model Equations (2) and (3). All the continuous variables
and the visiting time tij were standardized prior to analysis.
Finally, 656 subjects with mild cognitive impairment (MCI)
who had 3 to 14 follow-up visits with complete measure-
ments were selected for the analysis. Among them, 241 sub-
jects were diagnosed with AD during the follow-up period,
leading to a CR of approximately 63.3%. The gap between
the Kaplan-Meier curves of the two groups shown in Figure
2 strongly supports that APOE-�4 is a risk factor for AD.
We also randomly selected an individual from each group
and plotted their longitudinal test scores in Figure 3. It is
evident that the APOE-�4 carrier has much higher scores in

Table 3. Bayesian estimates of parameters in sensitivity analysis with ðn, CRÞ ¼ ð500, 30%Þ:
k0ðtÞ ¼ 0:5

�Ii � Gammað4, 5Þ, �Si � t3 �Ii � t3, �Si � Gammað4, 5Þ
CFA model (1)
Par BIAS RMSE BIAS RMSE
k2 –0.001 0.013 –0.000 0.012
k3 –0.001 0.012 0.000 0.013
w1 0.001 0.019 0.001 0.019
w2 –0.000 0.016 –0.000 0.016
w3 0.001 0.017 0.001 0.017
Latent growth curve model (2)
Par BIAS RMSE BIAS RMSE
c0 –0.006 0.052 –0.002 0.048
c1 0.006 0.090 –0.002 0.087
c2 0.001 0.046 0.006 0.046
c3 –0.011 0.071 0.004 0.078
b0 0.002 0.050 –0.001 0.050
b1 –0.009 0.091 0.001 0.088
b2 0.004 0.045 0.003 0.046
b3 0.008 0.080 –0.005 0.071
r11 0.009 0.039 0.011 0.040
r12 – – – –
r22 0.014 0.042 0.012 0.041
PH model (3)
Par BIAS RMSE BIAS RMSE
a1 –0.029 0.161 –0.025 0.160
a2 –0.001 0.108 0.005 0.111
a3 –0.010 0.154 –0.006 0.156
a4 0.018 0.110 0.015 0.118
Causal effects
Par BIAS RMSE Par BIAS RMSE
TEð0:6Þ 0.004 0.025 TEð0:6Þ 0.005 0.025
DEð0:6Þ 0.006 0.026 DEð0:6Þ 0.006 0.026
IEð0:6Þ –0.002 0.015 IEð0:6Þ –0.001 0.016
TEð1:2Þ 0.003 0.021 TEð1:2Þ 0.003 0.021
DEð1:2Þ 0.005 0.021 DEð1:2Þ 0.004 0.022
IEð1:2Þ –0.002 0.014 IEð1:2Þ –0.001 0.015
TEð1:8Þ 0.003 0.019 TEð1:8Þ 0.003 0.018
DEð1:8Þ 0.004 0.019 DEð1:8Þ 0.003 0.018
IEð1:8Þ –0.001 0.015 IEð1:8Þ 0.000 0.014

BIAS: bias; CFA: confirmatory factor analysis; Par: parameter; PH: proportional hazards; RMSE: root mean square error.
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ADAS11 and ADAS13 and lower score in MMSE than the
APOE-�4 noncarrier, manifesting the significant effect of
carrying the APOE–�4 allele on cognitive decline.

To implement the MCMC algorithm, we adopted Prior I
in the simulation study and ran several MCMC chains with
different initial values to check convergence. The trace plots
presented in Figure 4 show that the algorithm converged
within 20,000 iterations. After discarding 20,000 burn-in
iterations, we collected the subsequent 10,000 posterior sam-
ples to obtain parameter estimates and calculate the causal
effects on the survival probability of AD. Considering that
nearly 90% of failure time lies below 6, we chose t ¼

f1, 2, :::, 6g, covering several percentiles of multiple of 10.
Table 4 reports the estimates of the parameters (upper
panel) and causal effects (lower panel) together with their
95% credible interval (CI), constructed from 2.5% and
97.5% percentiles of the posterior samples.

First, the factor loading is positive for ADAS13
[k̂2 ¼ 1:012ð0:995, 1:028Þ] and negative for MMSE [k̂3 ¼
�0:904ð�0:926, � 0:883Þ], implying that a high ADAS13
score or low MMSE score is associated with a high cognitive
impairment. Thus, we interpret the dynamic latent mediator
as “cognitive decline.” Besides, carrying APOE-�4 alleles
positively affects the random intercept and slope in the
growth curve model [ĉ1 ¼ 0:359ð0:265, 0:431Þ, b̂1 ¼
0:170ð0:132, 0:215Þ], suggesting that APOE-�4 allele carriers
tend to have more severe cognitive impairment at baseline
and faster progression of cognitive decline than APOE-�4
allele noncarriers. Last, carrying APOE-�4 alleles [â1 ¼
0:450ð0:186, 0:748Þ] and cognitive decline [â2 ¼ 0:161
ð0:117, 0:206Þ] exhibit significantly positive effects on AD
hazards. Likewise, all the causal effects of carrying APOE-�4
alleles on the survival probability of AD are significantly nega-
tive, whatever the tested time t is. These findings confirm that
APOE-�4 allele carriers or those with rapid cognitive decline
have a high AD incidence. Moreover, carrying APOE-�4
alleles affects the survival outcome of interest through both a
direct path or aggravated cognitive impairment. Take t¼ 4 as
an example; when the exposure changes from APOE-�4 non-
carriers to APOE-�4 carriers, the AD survival probability
decreases by 0:115ð½�0:170, �0:062�Þ in total with an esti-
mated 0:086ð½�0:143, �0:035�Þ directly affected by carrying
APOE-�4 alleles and an estimated 0:029ð½�0:039, �0:020�Þ
through cognitive decline. Furthermore, the magnitudes of all
the effects increased with time, revealing the enhanced

Figure 3. The trajectories of cognitive test scores of two individuals randomly
selected from the APOE-�4 carrier (solid line) and noncarrier (dashed line)
groups.

Figure 2. Kaplan-Meier curves for overall, APOE-�4 carrier group, and APOE-�4 noncarrier group.
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Figure 4. Trace plots of some parameters in Alzheimer’s Disease Neuroimaging Initiative study.
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detrimental influence of the APOE-�4 allele on the incidence
of AD.

We also conducted the sensitivity analysis regarding the
number of partition intervals G and prior inputs. The
results obtained under G¼ 10 and Prior II are similar and
not reported.

7. Conclusion

This study conducted Bayesian causal mediation analysis for
multivariate longitudinal and survival data based on a joint
model framework comprising a linear SEM and PH model.
The SEM groups multivariate observations into a latent
mediator and captures its trajectory, reducing the dimension
of mediators and alleviating misinterpretation of the media-
ting mechanism. The PH model examines the effects of the
exposure, dynamic mediator, and baseline covariates on the
survival outcome of interest. Under the potential outcome
framework, causal effects were defined to quantify the
effects of exposure on the interested survival outcome
through direct and indirect paths. A fully Bayesian approach
was developed to conduct the estimation. Simulation studies
and an application to the ADNI dataset demonstrated the
utility of the proposed method.

Several issues merit further research. First, we can replace
the PH model with other survival models in the proposed
joint modeling framework, such as the accelerated failure
time model and mean residual life model. Second, the con-

ditional independence assumption between censoring time
C and failure time T given mediator process M may be too
restrictive to reflect the reality. Therefore, relaxing this
assumption under the current joint model is of considerable
interest. Third, it is unrealistic to exhaust confounders in
the application. The appropriate sensitivity analysis techni-
ques may be worth considering. Last, Didelez (2019) pro-
posed an alternative definition of mediated effects, and
investigating such effects is also of interest but challenging.
The above extensions require substantial efforts in future
research.

8. Appendix

8.1. Proof of Theorem 1

fz, z0 ¼ f ðTðz,Mðz0ÞÞ ¼ Ð
f ðTðz,mÞÞdFMðz0ÞðmÞ

¼ Ð
f ðTðz, IM ¼ w1, SM ¼ w2ÞÞdFWðz0Þðw1,w2Þ

¼ Ð
f ðTðz,W ¼ wÞÞdFWðz0ÞðwÞ
By Assumptions 1 and 2½ �

¼ Ð
f ðTðz,W ¼ wjz,wÞÞdFWðz0ÞðwÞ
By consistency assumption½ �

¼ Ð
f ðTjz,W ¼ wÞdFWðz0ÞðwÞ

(11)

The second line is due to model Equation (2), from which the medi-
ator process m is uniquely determined by the pair ðIM, SMÞ:

Table 4. Bayesian estimates of parameters in ADNI study.

CFA model (1)

Par Est 95% CI Par Est 95% CI Par Est 95% CI

k2 1.012 (0.995, 1.028) k3 –0.904 ð�0:926, �0:883Þ w1 0.140 (0.134, 0.146)
w2 0.111 (0.106, 0.116) w3 0.290 (0.277, 0.303)
Latent growth curve model (2)
Par Est 95% CI Par Est 95% CI Par Est 95% CI
c0 –0.431 ð�0:599, �0:117Þ c1 0.359 (0.265, 0.431) c2 0.048 (0.002, 0.126)
c3 0.174 (0.102, 0.233) c4 –0.101 ð�0:129, �0:070Þ c5 0.274 (0.092, 0.384)
c6 –0.047 ð�0:221, 0:076Þ c7 –0.269 ð�0:290, �0:237Þ c8 0.093 (0.020, 0.166)
b0 0.023 ð�0:094, 0:155Þ b1 0.170 (0.132, 0.215) b2 –0.011 ð�0:045, 0:026Þ
b3 0.112 (0.055, 0.159) b4 0.001 ð�0:030, 0:029Þ b5 0.109 (0.039, 0.175)
b6 0.010 ð�0:110, 0:123Þ b7 –0.078 ð�0:106, �0:051Þ b8 0.045 (0.013, 0.081)
r11 0.460 (0.411, 0.514) r12 0.175 (0.151, 0.200) r22 0.138 (0.123, 0.156)
PH model (3)
Par Est 95% CI Par Est 95% CI Par Est 95% CI
a1 0.450 (0.186, 0.748) a2 0.161 (0.117, 0.206) a3 0.041 ð�0:095, 0:196Þ
a4 0.025 ð�0:336, 0:304Þ a5 0.073 ð�0:040, 0:191Þ a6 –0.080 ð�0:493, 0:228Þ
a7 0.166 ð�0:287, 0:589Þ a8 �0:250 ð�0:380, �0:109Þ a9 0.270 ð0:140, 0:388Þ
Causal effects on survival probability
Par Est 95% CI Par Est 95% CI Par Est 95% CI
TE(1) –0.018 ð�0:029, �0:008Þ DE(1) –0.015 ð�0:025, �0:005Þ IE(1) �0:003 ð�0:004, �0:001Þ
TE(2) �0:037 ð�0:057, �0:017Þ DE(2) –0.029 ð�0:049, �0:011Þ IE(2) –0.008 ð�0:010, �0:004Þ
TE(3) –0.083 ð�0:124, �0:043Þ DE(3) –0.063 ð�0:105, �0:025Þ IE(3) –0.020 ð�0:026, �0:013Þ
TE(4) –0.115 ð�0:170, �0:062Þ DE(4) –0.086 ð�0:143, �0:035Þ IE(4) –0.029 ð�0:039, �0:020Þ
TE(5) –0.138 ð�0:202, �0:075Þ DE(5) –0.101 ð�0:168, �0:040Þ IE(5) –0.037 ð�0:049, �0:026Þ
TE(6) –0.159 ð�0:231, �0:088Þ DE(6) �0:114 ð�0:190, �0:045Þ IE(6) –0.045 ð�0:059, �0:032Þ
BIAS: bias; CFA: confirmatory factor analysis; CI: credible interval; Est: estimate; Par: parameter; PH: proportional hazards; RMSE: root mean square error.
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8.2. Posterior Distribution

The posterior distributions of all parameters are as follows:

Kkj�½ � � N K�
k ,r

�
k

� �
, wkj�

� � � IGðc�k1, c�k2Þ, kg j�
� � � Gammaðd�g1, d�g2Þ, Rj�½ � � IWðR�,q�Þ,

pðwij�Þ / exp � 1
2

XJi
j¼1

ðYij � KmyijÞTW�1ðYij � KmyijÞ � 1
2
ðwi �mwiÞTR�1ðwi �mwiÞ

8<
:

9=
;

�
YG
g¼1

fkj exp ðmkiÞg�igdi exp ��ig kgðTi � ug�1Þ þ
Xg�1

l¼1

klðul � ul�1Þ
8<
:

9=
; exp ðmkiÞ

2
64

3
75,

pðaj�Þ /
Yn
i¼1

YG
g¼1

fkg exp ðmkiÞg�igdi exp ��ig kgðTi � ug�1Þ þ
Xg�1

l¼1

klðul � ul�1Þ
8<
:

9=
; exp ðmkiÞ

2
64

3
75

� exp ð� 1
2
ða� a0ÞTH�1

a ða� a0ÞÞ,

pðcÞ / exp � 1
2

Xn
i¼1

XJi
j¼1

ðYij � KmyijÞTW�1ðYij � KmyijÞ � 1
2

Xn
i¼1

ðwi �mwiÞTR�1ðwi �mwiÞ
8<
:

� 1
2
ðc� c0ÞTH�1

c ðc� a0Þ
)Yn

i¼1

YG
g¼1

fkj exp ðmkiÞg�igdi exp ��ig kgðTi � ug�1Þ þ
Xg�1

l¼1

klðul � ul�1Þ
8<
:

9=
; exp ðmkiÞ

2
64

3
75,

pðbÞ / exp � 1
2

Xn
i¼1

XJi
j¼1

ðYij � KmyijÞTW�1ðYij � KmyijÞ � 1
2

Xn
i¼1

ðwi �mwiÞTR�1ðwi �mwiÞ
8<
:

� 1
2
ðb� b0ÞTH�1

b ðb� b0Þ
)Yn

i¼1

YG
g¼1

kj exp ðmkiÞg�igdi exp ��ig kgðTi � ug�1Þ þ
Xg�1

l¼1

klðul � ul�1Þ
8<
:

9=
; exp ðmkiÞ

2
64

3
75,

8><
>:

where r�k¼ðJwkþr�1
k Þ�1, K�

k¼
Pn

i¼1

PJi
j¼1yijkðIMiþSMi tijÞþr��

k Kk0, c�k1¼
ck1þJ=2, c�k2¼ck2þ1

2ðyijk�KkmyijÞ2, d�g1¼
Pn

i¼1�igdiþdg1, d�g2¼Pn
i¼1expðmkiÞ½kgðTi�ug�1ÞþIðg<GÞPG

l¼gþ1�ilðul�ul�1Þ�þdg2, R�¼
RþPn

i¼1ðwi�mwiÞT ðwi�mwiÞ, q�¼qþn=2:
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